Hepatic cells derived from human skin precursors as an *in vitro* model to study non-alcoholic fatty liver disease

Robim M Rodrigues, Joost Boeckmans, Alessandra Natale, Karolien Buyl, Joery De Kock, Tamara Vanhaecke, Vera Rogiers

Invitrom Symposium – Breda
23rd March 2017
OUTLINE

1. The disease
 A. NAFLD?
 B. Main causes
 C. Molecular mechanisms

2. The model
 A. What are hSKP?
 B. hSKP-derived hepatic cells
 C. Application in hepatotoxicity testing

3. *In vitro* modeling of NAFLD

4. Conclusion/perspectives
1. The disease
 A. NAFLD?
 B. Main causes
 C. Molecular mechanisms

2. The model
 A. What are hSKP?
 B. hSKP-derived hepatic cells
 C. Application in hepatotoxicity testing

3. *In vitro* modeling of NAFLD

4. Conclusion/perspectives
The Disease – NAFLD?

Normal Liver → Simple steatosis → NASH → Cirrhosis → Hepatocellular carcinoma

Normal Liver

Steatosis

NAFLD
non-alcoholic fatty liver disease

NASH
non-alcoholic steatohepatitis

Fibrosis/Cirrhosis

Cohen JC et al. Science 2011;332(6037):1519-1523
The Disease – NAFLD?

- High prevalence world wide:
 - NAFLD: ~20% of the adult population
 - NASH: ~2% (100m people)
 - still increasing in industrialized countries due to strong correlation to lifestyle and unhealthy diets...

steatosis \rightarrow NASH \rightarrow fibrosis \rightarrow cirrhosis \rightarrow cancer

mostly asymptomatic, reversible, benign(!)
The Disease – Main Causes

Multiple factors drive the onset of NAFLD:

A. Environmental/genetic inducers:
 - high-fatty diet
 - obesity
 - diabetes
 - insulin resistance → metabolic syndrome

B. Chemical inducers:
 - drugs (valproic acid, tamoxifen, tetracycline, amiodarone)
 - toxicant associated fatty liver disease (TAFLD): exposure to industrial chemicals and environmental pollutants
The Disease - Mechanisms

1. Increased FA uptake (obesity)
2. De novo lipogenesis
3. Reduced FA oxidation
4. Reduced VLDL secretion

Hepatic TG accumulation
The Disease - Mechanisms

E.g. insulin-induced NAFLD (hyperinsulinemia in the case of IR):

SREBP: sterol regulatory element-binding proteins; ChREBP: carbohydrate responsive element-binding protein; ATGL: adipose triglyceride lipase; HSL: hormone sensitive lipase

Cohen JC et al. Science 2011;332(6037):1519-1523
The Disease - Mechanisms

How to investigate NAFLD?

A. Animal-based models
 Rodents, zebrafish,... → diet, genetic modified (eg *ob/ob* mice)
 → do not recapitulate the human pathophysiology accurately

B. *In vitro* hepatic models
 - human primary hepatocytes (hHEP):
 • gold standard
 • scarce, expensive, low quality for *in vitro* applications
 - hepatic cell lines (HepG2, HepaRG, ...)
 • surrogates to hHEP
 • limited functionality, abnormal genetic background...

→ Lack of an appropriate human-based *in vitro* model to study NAFLD!
1. The disease
 A. NAFLD?
 B. Main causes
 C. Molecular mechanisms

2. The model
 A. What are hSKP?
 B. hSKP-derived hepatic cells
 C. Application in hepatotoxicity testing

3. *In vitro* modeling of NAFLD

4. Conclusion/perspectives
The Model – what are hSKP?

hSKP - Human **SK**in-derived **P**recursors

- Postnatal/adult stem cells isolated from human skin
- Thought to reside in hair follicle/dermal papillae
- Contribute to dermal maintenance, wound healing and hair follicle morphogenesis
- Robust protocol for isolation from foreskin, eyelid,... (mechanic/enzymatic, selective media)

The Model – what are hSKP?

hSKP - Human **SK**in-derived **P**recursors

- Postnatal/adult stem cells isolated from human skin
- Thought to reside in hair follicle/dermal papillae
- Contribute to dermal maintenance, wound healing and hair follicle morphogenesis
- Robust isolation protocol from foreskin, eye lid,... (mechanic/enzymatic, selective media)
The Model – what are hSKP?

→ hSKP express typical markers

- SNAIL: snail homolog 1; PAX3: paired box3; MSX1: muscle segment homeobox 1

→ High self renewal capacity
→ Multipotent cells?
The Model – what are hSKP?

Comparison to ESC and other postnatal stem cells:

- adipose tissue: **hAT-MSC**
- bone marrow: **hBM-MSC**
- umbilical cord: **hWJ-MSC**

hSKP show highest intrinsic expression of stemness genes

- Differentiation into cell types from the three germ lineages:
 - **Mesoderm:** adipocyte-, chondrocyte-, osteocyte-, smooth muscle-like cells
 - **Ectoderm:** Schwann cells, neuron-like cells
 - **Endoderm:** hepatic cells?
The Model – hSKP-derived hepatic cells

Cells with mixed phenotype of mature and immature hepatocytes

hSKP – derived hepatocyte progenitor-like cells or hSKP-HPC
The Model – hSKP-derived hepatic cells

→ **Early hepatic** markers (EPCAM, GATA6, PROM1, NCAM, SMAD4 and THY1)

![Graph showing mRNA levels of various markers](image1)

- EPCAM: epithelial cell adhesion molecule
- GATA: GATA motif binding protein
- PROM: promin
- NCAM: neural cell adhesion molecule
- SMAD4: stem cell factor receptor
- THY1: thymocyte differentiation antigen

→ **Mature hepatic** markers (e.g. albumin, HNF1α, HNF4α and AHR)

![Bar chart showing relative normalized mRNA levels](image2)

→ **Basal expression of fetal and mature hepatic** biotransformation enzymes

![Graph showing mRNA levels of fetal and mature enzymes](image3)

- FMO: flavin containing mono-oxigenase
- MAO: monoamine oxidase
- CYP: cytochrome P450
- hHEP: primary hepatocytes

→ **Induced expression of fetal and mature** CYP enzymes

![Graph showing normalized mRNA levels](image4)
The Model – hepatotoxicity testing

Ultimate functionality test: can these cells show hepatotoxicity induced by reference compounds?

→ Acute liver failure induced by APAP

→ **APAP**: acetaminophen, paracetamol
→ Analgesic and antipyretic drug
→ Safe therapeutic dose
→ **Overdose (>10g)** induces hepatic toxicity (depletion of GSH) → **ALF**

APAP: N-Acetyl-p-Aminophenol
NAPQI: N-acetyl-p-benzoquinoneimine
SULT: sulfotransferase; UGT: UDP-glucuronosyltransferase; GST: glutathione S-transferase
The Model – hepatotoxicity testing

→ Comparison to human primary hepatocytes (hHEP), cell lines (HepaRG, HepG2) and liver samples of patients suffering from APAP-induced ALF
→ Toxicity evaluation by analysis of gene expression of whole genome (microarrays; transcriptomics)

- PCA analysis:
→ Clustering by cell type
→ APAP: shift in same direction (similar modulated genes)

- PCA: principle component analysis -
The Model – hepatotoxicity testing

- **Pathway analysis**: identification of toxicity gene classes

 → Same ALF-specific toxicity responses in *in vitro* models

 → Higher percentage of significant modulated genes in **hSKP-HPC!!**

<table>
<thead>
<tr>
<th>Pathway</th>
<th>hSKP-HPC</th>
<th>hHEP</th>
<th>HepaRG</th>
<th>HepG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver Failure</td>
<td>20% (16/82)</td>
<td>11% (9/82)</td>
<td>17% (14/82)</td>
<td>-</td>
</tr>
<tr>
<td>Liver Proliferation</td>
<td>18% (61/339)</td>
<td>9% (30/339)</td>
<td>14% (47/339)</td>
<td>2% (6/339)</td>
</tr>
<tr>
<td>Liver Necrosis</td>
<td>11% (61/583)</td>
<td>4% (25/583)</td>
<td>9% (54/583)</td>
<td>1% (6/583)</td>
</tr>
<tr>
<td>Liver Damage</td>
<td>8% (55/656)</td>
<td>6% (37/656)</td>
<td>10% (68/656)</td>
<td>1% (5/656)</td>
</tr>
</tbody>
</table>

→ **hSKP-HPC exposed to APAP** identify the same toxicity gene classes as primary human hepatocytes and hepatic cell lines exposed to APAP
The Model – hepatotoxicity testing

- Comparison to liver samples of patients suffering from APAP-induced ALF:

→ a higher number of commonly modulated genes found between hSKP-HPC and clinical ALF samples
- Prediction chart «Damage of liver» based on modulated genes selected for clinical APAP-ALF samples (functional interpretation)
- Prediction chart «Damage of liver» based on modulated genes selected for clinical APAP-ALF samples (functional interpretation)

→ hSKP-HPC, hHEP and HepaRG show a predicted activation of “damage of liver”

→ HepG2 show no activation based on these genes

Rodrigues et al Toxicology Letters (2016)
OUTLINE

1. The disease
 A. NAFLD?
 B. Main causes
 C. Molecular mechanisms

2. The model
 A. What are hSKP?
 B. hSKP-derived hepatic cells
 C. Application in hepatotoxicity testing

3. *In vitro* modeling of NAFLD

4. Conclusion/perspectives
In vitro modeling of NAFLD

NAFLD (first step steatosis)

Expose hSKP-HPC to:

→ Chemical inducers:
 - sodium valproate (Na-VPA): steatogenic drug
 - tetracycline: steatogenic drug
 - 2-ethylhexanol: industrial chemical

→ Environmental inducers:
 - sodium oleate: mimicking high-fat diet
 - insulin: mimicking insulin resistance
In vitro modeling of NAFLD

NAFLD (first step steatosis)

Expose hSKP-HPC to:

→ Chemical inducers:
 - sodium valproate (Na-VPA): steatogenic drug
 - tetracycline: steatogenic drug
 - 2-ethylhexanol: industrial chemical

→ Environmental inducers:
 - sodium oleate: mimicking high-fat diet
 - insulin: mimicking insulin resistance
In vitro modeling of NAFLD – Na-VPA

Na-VPA induces intracellular lipid accumulation in hSKP-HPC

Effect is more pronounced than in hHEPs
Transcriptomics analysis:

- Comparison to hHEP and liver samples of patients suffering from mild and severe steatosis
- Clustering of *in vitro* systems
- Higher variation in the clinical samples
- Shift in same direction (similar modulated genes)
In vitro modeling of NAFLD – Na-VPA

Pathway analysis: identification of toxicity gene classes

<table>
<thead>
<tr>
<th></th>
<th>IN VITRO</th>
<th>IN VIVO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hSKP-HPC + NA-VPA</td>
<td>hHEP + NA-VPA</td>
</tr>
<tr>
<td>Liver Damage</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liver Necrosis</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liver Steatosis</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Liver Fibrosis</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

→ Transcriptomics analysis of hSKP-HPC exposed to Na-VPA reveals the activation of steatotic functions
In vitro modeling of NAFLD - tetracycline

Tetracycline induces triglyceride accumulation in **hSKP-HPC** by three different mechanisms: (i) an increase in de novo lipogenesis, (ii) a decrease of the \(\beta \)-oxidation and (iii) a decrease in the secretion of VLDL. HepaRG show only a decrease of \(\beta \)-oxidation.

ACADSB: acyl-CoA dehydrogenase; **SCD1**: stearoyl-coenzyme A desaturase 1; **APOB**: apolipoprotein B; **FASN**: Fatty acid synthase; **CD36**: fatty acid synthase.
In vitro modeling of NAFLD - insulin

Insulin induces TG accumulation in hSKP-HPC by increasing de novo lipogenesis and decreasing VLDL secretion.

ACADSB: acyl-CoA dehydrogenase; ACC: acetyl-coenzyme A carboxylase; DGAT: diacylglycerol acyltransferase; CPT1: carnitine palmitoyltransferase 1; PPAR: peroxisome proliferator-activated receptor
In vitro modeling of NAFLD – insulin + treatment

- Investigation of potential compounds that can revert effect of insulin (anti-NAFLD NCE?)
 - PPAR-α (peroxisome proliferator-activated receptor α) = transcription factor and a regulator of lipid metabolism → possible drug target
 - Expose hSKP-HPC to insulin and PPAR-α agonist (bezafibrate) or antagonist (GW6471)
Conclusions:

→ **hSKPs** are **multipotent adult stem cells** that can be isolated from small human skin segments.

→ These cells can be efficiently **differentiated** into cells with **hepatic properties** that can be used in exploratory *in vitro* toxicology.

→ **Proof-of-principle** experiments show that differentiated cells exposed to insulin can be used as a **disease model for NAFLD**.

Perspectives:

→ Further characterization of the model...
 (incl. further evaluation of anti-NAFLD compounds)

→ Further developments towards a NASH model...
 (bring in inflammatory conditions)
Acknowledgements

In Vitro Toxicology and Dermato-Cosmetology, VUB

All *IVTD*-colleagues

Prof. Dr. Vera Rogiers
Prof. Dr. Tamara Vanhaecke
Prof. Dr. Joery De Kock

Drs Joost Boeckmans

Dept. Morphology and Molecular Pathology, KUL

Prof. Dr. Tania Roskams, Dr. Olivier Govaere

Center of Physiology Institute of Neurophysiology, University of Cologne

Prof. Dr. Agapios Sachinidis, Mr. Umesh Chaudari

Department of Urology, University Hospital Brussels

Dr. Veerle De Boe